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Introduction

Econometrics is mainly concerned with the construction of models to
study economic phenomena. In frequentist methods, misspecifica-
tion is a problem that is not addressed oftenly due to the difficulties
it entails. The Bayesian paradigm, allows to treat the model speci-
fication as a random variable as well and therefore, a likelihood and
prior can be formulated in order to deal with the issue of misspec-
ification. This is done with a technique known as Bayesian Model
Averaging (BMA), that makes use of Markov Chain Monte Carlo
Model Composition (MC3?) methods. This presentation will follow
Koop (2003).
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Motivation

Say one acquires data y and that there are R different models; one
can think about attacking the specific problem. Then each model
M, with r =1,... R, depends on a specific set of parameters, 6,,
and is characterized by a likelihood p(y|6,, M,), a prior p(6,|M,)
and a posterior p(0,|y, M,).

To learn about the parameters in each model we use Bayes' theorem

_ p(y|0r, M)p(6,|M,)
PLOrly M) = p(y|M;) (1)
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Motivation

Since the model can also be thought of as being uncertain, we find
posterior model probabilities

p(y|M;)p(M;)

p(M,ly) = o(y)

()

Here p(M,) is known as the prior model probability. In order to find
p(y|M,), the marginal likelihood, we can use Eq. 1

p(yIM,) = / p(y 167, M,)p(6,|M, ) d6, 3)
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Motivation

When formulating a specific problem, one usually has some coeffi-
cients ¢ in mind that are common to all models. All of the infor-
mation about ¢ is contained in p(¢|y) which can be found through
simple rules of probability as

R

p(¢ly) = p(8IMr,y)p(Mly) (4)

r=1

Or, if g(¢) is a function of interest (such as the mean), then

Elg(9)ly] = ZE[g )IM:, y1p(M:y) (5)
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Motivation

In any case, one needs to compute E[g(¢)|M,, y] and the posterior
model probabilities p(M,|y) for every model. However, we know
that both of these calculations can be strenuous and difficult to
handle even if R remained small.

The literature has focused on cases where the quantities can be

found analytically and techniques such as MC3 have been developed
to deal with a large number of models.
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Overview

Different models can be derived in many ways. For example:

@ A model with normally distributed errors against a t-student
distributed errors.

@ A logit against a probit model.

@ A linear regression with different explanatory variables
In this presentation we focus on a normal linear regression model
that is defined by its explanatory variables. Therefore, if there are
K different possible variables, the number of models is R = 2K,
We start by discussing the likelihood, priors, posteriors and marginal
likelihoods for this problem.
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Likelihood

Formally, we say we have data on / = 1,..., N individuals. The
dependent variable y is a N x 1 vector and we have K possible
independent variables, collected in the N x K matrix, X. Therefore,
our models are M, with r = 1,...,2X. We assume there is an
intercept « in each model and thus

y=oun+ X Br+€ (6)

Where 1y is a N-vector of ones, X, is a N x k, matrix containing
some (or all) columns of X. € is a N-vector assumed to be normally
distributed with mean Oy and covariance matrix h™1/y.
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Likelihood

We can transform the distributional assumptions on ¢ to a distribu-
tion for y using the change of variables theorem. As such, y follows
a multivariate normal distribution and the likelihood function is

hN/2
(27T)N/2

X exp {_g(y — QLN — Xrﬁr),(y — QN — Xrﬁr)}

p(yla, Br, by Xo, M) =
(7)
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The prior distribution is extremely important for BMA and should
be treated with care. For example, even if one had a lot of prior
information, formulating 2K different prior distributions would be
next to impossible for a researcher. Therefore, we assume that the
parameters that are common for each model follow the same prior
distribution and set these to

1
p(h) oc o (8)
p(a) x 1 9)

These are noninformative priors for both h and «.
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For the 5, must be used informative priors. Non—informative priors
are dangerous. These favor parsimony, no matter the data, or when
the number of regressors are the same, posterior odds depend upon
units of measure. So, we assume the usual conjugate priors, i.e. a
normal distribution conditional on h such as

Bilh~ N(B, hV,) (10)

We center the prior mean around 0 and assume what is called a
g-prior for V,. That is,

B, =0k, (11)
V, = (gXX)"! (12)

Andrés Ramirez Hassan Bayesian Econometrics



Setting
0000008000

This g-prior depends on data information (similar to empirical Bayes
methods). It also helps reducing the selection of hyperparameters
from N(N + 1)/2 variance and covariances to a single g,. This is
also a benchmark prior used extensively in BMA.

Thus, the prior for each §, is

Belh ~ N(0k,, g X! X)™h) (13)
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Posterior

The posterior distributions will simply be a generalization of

Belh,y, My ~ N(B,, h™1V) (14)
h’yv Mr ~ g(V,§_2) (15)

For our particular case, we find that

V= [(1 + gr)Xr/Xr]il (16)
B, =VXly (17)
=2 — /P gr v / v — 1

Sl s G S i (v =yw)(y —yen)/v  (18)
Px, = Iy — X, (X! X,) 1 X! (19)

v=N (20)
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Marginal likelihood

Remember that the marginal likelihood is

mnma:/mnmwMMMMmmr (21)

For our particular case, this turns out to be

ke

8r 2
v o () (22)
_N-1
X[ 1 Y'Pxy + ——(y — yin) (y — in) 2
1+gr ' 1+gr
(23)
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Posterior model probabilities

We can compute these probabilities for each model analytically as

p(Mly) = cp(y|M:)p(M;) (24)

Where c is just a constant that gets canceled in every comparison.
Setting the prior model probability equal for every model to 1/R,
we just compute the Bayes factor of the likelihoods, normalizing

ply[M;)

M,ly) = — =0
PN = S o m)

(25)
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Motivation

When the number of models is high, it is extremely hard to com-
pute the probabilities for all models and MC3 methods were in-
vented to deal with such cases. In particular, the algorithm by
Madigan et. al (1995) generalizes the Metropolis-Hastings frame-
work for model selection. First, you have a model in the previous
iteration, say M(©E=1_ Then, a new proposed model M* is drawn
from the model space comprised by all the models that add, subtract
or leave the same variables as M(&=1) with equal probability. The
acceptance probability takes the form of

£e1) pper (y|M*)p(M*)
a(M )’M)_mm{p(y\l/)\/’)(/g‘”)z(’\/’(g‘l))’l} 0
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Posterior model probabilities

If we consider equal priors for both models, i.e. p(M*) = p(M(&—1),
these cancel out and we just need to compute the Bayes factor
associated to them

(1M
BF = Lyl 1)

This will be the fundamental calculation. By simulation, we can
approximate the functions of parameters with the formula in Eq. (5).
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Algorithm

@ Choose a starting model M(©),

@ At the gth iteration, draw a model from a similar model space
as a candidate, say M*

@ Compute the marginal likelihood p(y|M,) for M) and M*
Q Calculate
(€-1) ppey— i POYIMT)
a(M ,M*) mm{p(y\/\/l(é’—l))’l (28)
@ Generate U from U(0,1)

Q If U< a(ME=Y M*) then M(&) = M*, if not
M(&) = M(&e—1) and go back to 1.
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Simulation setting

There are five possible variables to choose from and the real model
includes only the first three. There are 2° = 32 possible models.

X = [x1; x2; X3; X5 X5]
x;i ~N(0,(i+1)?),i=1,...,5

B =12,3,4]
p~N(0,1)
y=Xb+n

X* = [x1; x2; x3]
1 H 2
= ifN>K
8r = {N

= IfN<K?
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Exact exercise

A first approach, that is feasible since the number of models is low, is
to compute the likelihood and posterior model probabilities for each

model. Using this approach vyields the following posterior model
probabilities:

Table: Exact Posterior Model Probabilities

Model Probability
Only First Three  79.74%
All Others 20.26%
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Model Composition

A possible second approach is to follow the algorithm proposed be-
fore and explore the possible model space. We can then compute
posterior inclusion probabilities (PIP) as the amount of times a vari-
able appears as part of a model. After 10,000 iterations and dis-

carding 2,000, the PIP’s are as follows:
Table: Posterior Inclusion Probabilities: First Method

Variable Probability

X1 100.00%
X2 100.00%
X3 100.00%
Xa 8.09%
Xs 6.20%
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Model Composition

Finally, yet another approach similar to the previous one is to take
M models such that M << 2% and focus on those. That is, we
take an initial M models and then iterate by pairing the worse of
those with a candidate model. With the same iteration scheme, the

PIP’s for the best M = 5 models are:
Table: Posterior Inclusion Probabilities: Second Method

Probability
X1 100.00%
X, 100.00%
X3z 100.00%
Xa 0.00%
Xs 0.00%
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