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Introduction

In this course we perform an introduction to Bayesian
methods, we show some basic definitions and properties of the
bayesian approach. We have taken the content from the work
by some authors as Greenberg (2008), Berger (1985),
Albert(2007) and Robert & Casella (2004).1

1

Greenberg, E. (2008). Introduction to Bayesian Econometrics.
Springer.

Berger, J. (1985). Statistical Decision Theory and Bayesian
Analysis. Springer-Verlag.

Robert, C. Casella G. (2004). Monte Carlo Statistical Methods.
Springer. Second Edition.

Albert, J. (2007). Bayesian Computation with R.Springer.
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Introduction

After this brief epistemological introduction, we show in
the first part of this course the basic ideas of the Bayesian
approach. In particular, the statistical decision theory
foundations of the Bayesian approach, and some simple
examples.

In the second part we introduce some concepts related to
elicitation, that is, how to transform experts’ knowledge
in probabilistic statements.

In the third part we show some basic conjugate families,
which allow to obtaining easily the posterior distribution.
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In the fourth part, we study some simulation techniques
as Markov chain Monte Carlo (MCMC), which is a
flexible simulation method that can deal with a wide
variety of models.

In fifth part we apply MCMC techniques to models
commonly encountered in econometrics and statistics.
We will emphasize the design of algorithms to analyze
these models as a way of preparing the reader to develop
algorithms for the new models.

Finally, the sixth part is devoted to Bayesian Model
Averaging, which is a technique to introduce model
uncertainty.
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In probability theory, the sample space, that we denote Ω, of
an experiment or random trial is the set of all possible
outcomes. A probability is a number assigned to statements or
events. Examples of such statements are:

A1 : A coin tossed three times will come up heads either
two or three times.

A2 : A six-sided die rolled once shows an even number of
spots.

A3 : There will be measurable precipitation on January 1,
2008, at your local airport.
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Standard notation:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

P(A ∩ B) = P(A) + P(B)− P(A ∪ B).

A ∪ Ac = Ω

Probability Axioms

1 P(A) > 0.

2 P(Ω) = 1.

3 If A1,A2, . . . , are pairwise disjoint, then
P(∪∞i=1Ai) =

∑∞
i=1 P(Ai).

1 Let P(A|B) denote the probability of A, given that B is

true. Then P(A|B) = P(A∩B)
P(B)

. This is the Bayes’ rule.
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Subjective Probability

The calculus of probability as a quantification of the
uncertainty in decision making.

Coherence

A bookmakers’ betting odds are coherent if a client cannot
place a bet or a combinations of bets such that no matter
what outcome occurs, the bookmaker will lose money.

Assumptions

1 The odds are fair to the bookmaker, that is the
bookmaker is willing to both sell and buy on any of the
events posted.

2 There is no restriction about the number of bets that
clients can buy or sell, as long as this is finite.
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The Dutch book theorem

If assumptions 1 and 2 hold, a necessary condition for a set of
prices to be coherent is to satisfy Kolmogorov’s axioms.

Betting odds

k =
1− P(A)

P(A)

where A is the event, and k is is the odds against A. In
addition, let’s S the number of tickets. S > 0 means that we
are betting that A occurs, and S < 0 means that we are
betting against A.
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Payout

If A occurs and we bet on it, we would “receive” S(1 + k),
a positive number because S > 0 if we bet on A.

If A occurs and we bet against it, we would “receive”
S(1 + k), a negative number because S < 0 if we bet
against A.

De Finetti betting setup

The price of the ticket p is set by us, the payout is fixed at 1,
and your opponent chooses S .
So, a winning ticket on A would pay p(1 + k). But in the de
Finetti setup, the payout is 1, so k = (1− p)/p, which implies
p = P(A).
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Axioms

Event Our gain
A (1− p)S
Ac −pS

1 If p < 0, our opponent, by choosing S < 0, will inflict a
loss.

2 If p > 1, your opponent can set S > 0, and you are again
sure to lose.
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Axioms

If you are certain that A will occur, coherency dictates that we
set p = 1.

Axioms

Event Our gain
A1 (1− p1)S1 − p2S2 + (1− p3)S3

A2 −p1S1 + (1− p2)S2 + (1− p3)S3

(A1 ∪ A2)c −p1S1 − p2S2 − p3S3

Consider betting in three events: A1, A2 and A1 ∪ A2. We
should set p1, p2 and p3 such that we do not have a sure loss.

This implies p1 + p2 = p3.
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Axioms

Event Our gain
AB (1− p1)S1 + (1− p2)S2 + (1− p3)S3

BAc −p1S1 + (1− p2)S2 − p3S3

ABc −p1S1 − p2S2

(A ∪ B)c −p1S1 − p2S2

Consider betting in three events: AB , B and A|B . We should
set p1, p2 and p3 such that we do not have a sure loss.

This
implies p1 = p2p3.
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Notation for Density and Distributions Functions

π(·) denotes a prior and π(·|y) denotes posterior density
function of parameters; these densities are continuous
random variables in the statistical models we discuss.

f (y |θ) denotes the likelihood function.

p(·) denotes the probability mass function (p.m.f) of a
discrete random variable.

f (·) denotes the probability density function (p.d.f) for
continuous data. F (·) denotes the distribution function
(d.f) for continuous data.
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Prior, Likelihood, and Posterior

Now, we show how to obtain the posterior distribution from
the likelihood function and the prior distribution. By the
Bayes’ rule:

π(θ|x) =
f (x |θ)π(θ)

f (x)
,

where

f (x) =

∫
f (x |θ)π(θ)dθ.

The interesting thing in this approach is that we can mix two
information sources: Prior information available or knowledge
from the expert source (through prior distribution) and data
obtained from an experiment or observation (through the
likelihood function).
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Prior, Likelihood, and Posterior

To illustrate how we can obtain a posterior distribution from
the likelihood function and prior distribution we show the
following example taken from Albert:2

Suppose a person is interested in learning about the
sleeping habits of American college students. This person
hears that doctors recommend eight hours of sleep for an
average adult. What proportion of college students get at
least eight hours of sleep?

Here we think of a population consisting of all American
college students and let p represent the proportion of this
population who sleep at least eight hours. We are
interested in learning about the location of p.

2Albert, J. (2007). Bayesian Computation with R. Springer. pag 19.
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Prior, Likelihood, and Posterior

To learn about p, a first step is to take a random sample
of students from some university.
But, before taking the sample the person can do an initial
research to learn about the sleeping habits of college
students. This research will help her in constructing a
prior distribution.
A simple approach for assessing a prior for p is to write
down a list of plausible proportion values and then assign
weights to these values. In this example, the person
believes that:

p 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
weights 0.0625 0.125 0.25 0.25 0.125 0.0625 0.03125 0.03125 0.03125 0.03125

Based on her beliefs, she assigns these values the
corresponding weights.
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Figure: Discrete Prior for p, proportion of who sleep at least eight
hours.
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A sample of 27 students is taken in this group, 11 record
that they had at least eight hours of sleep the previous
night. Based on the prior information and this observed
data, the person is interested in estimating the proportion
p.

If we regard a success that a person slept at least eight
hours and we take a random sample with s success and f
failures, then the likelihood function is given by

L(y |p) ∝ ps(1− p)f .
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Prior, Likelihood, and Posterior

Suppose that our prior density for p is denoted by g(p). The
posterior density for p, by Bayes’ rule, is obtained, up to a
proportionality constant, by multiplying the prior density by
the likelihood

g(p|y) ∝ g(p)L(y |p).
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Figure: Prior, Likelihood and Posterior distribution for p,
proportion of who sleep at least eight hours.
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Prior, Likelihood, and Posterior
Distribution Beta as Prior

Because the proportion is a continuous parameter, we can use
an alternative approach, defining a density g(p) on interval
(0, 1) that represents the person’s initial beliefs. Suposse she
believes that the porportion is equally likely to be smaller or
larger than p = 0.3. Moreover, she is 90% confident that p is
less than 0.5. A convenient family of densities for a proportion
is the beta with kernel proportional to

g(p) ∝ pa−1(1− p)b−1,

where the election of the hyperparameters a y b are chosen to
reflect the user’s prior beliefs about p.
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Prior, Likelihood, and Posterior
Distribution Beta as Prior

Here the person believes that the median and 90th percentiles
are given, respectively, by 0.3 and 0.5 and this can be
matched, by trial and error, with a beta density with a = 3.4
and b = 7.4. Combining this beta prior with the likelihood
function, one can show that the posterior density is also of the
beta form update parameters a + s and b + f

g(p|y) ∝ pa+s−1(1− p)b+f−1,

0 < p < 1.
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Prior, Likelihood, and Posterior
Distribution Beta as Prior
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Figure: Prior, likelihood and Posterior distribution for p, proportion
of who sleep at least eight hours. 24 / 24
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